
##Events called by the Rdynamic event scheduler (ev$doEvent)

Main function code

MUST CHANGE FUNCTION NAME, nstate, ndisc, nextra, Outnames,
##ode CALL, AND structure STATEMENT AT END

vliver_pbpk <- function(Times, newParms, method="lsode", ...){
!dots <- list(...)
How many intervals to solve before giving up:
maxinter <- 1 00
#Number of state variables:
nstate <- 9
ndisc <- 0
nextra <- 1
#0 Names of extra state variables:
Outnames <- c("Ratioblood2plasma")
##Initialize parameters and state variables
Parms <- in itparms(newParms, vliver _pbpk. Parms, ComputeParms)
yinit <- lnity(Parms)
y <- yinit[[1]]
ydisc <- yinit[[2]]

put ydisc at the bottom of Parms
Parms <- c(Parms,ydisc)
##initialize the events structure
ev <- ConstructEvents(sort(Times))
insert dietary inputs
##first set up the pulse
if (any(Parms[["Dietl nput"]][,2]>0))
{

}

ev$newPulse("Dietlnput")
#Crop doses that occur after the requested time interval:
if (!is.null(dim(Parms[["Dietlnput"]])))
{

i <- 1
while (i <= dim(Parms[["Dietlnput"]])[1])
{

}

if(max(Times) > Parms[["Dietlnput"]][i,1]) i <- i + 1
else break

Parms[["Dietlnput"]] <- matrix(Parms[["Dietlnput"]][1 :(i-1),],ncol=2)
if (Parms[["Dietlnput"]][i-1 ,2]!=0)

Parms[["Dietlnput"]] <- rbind(Parms[["Dietlnput"]], matrix(c(max(Times),O),ncol=2))
} else {

Parms[["Dietlnput"]] <- rbind(Parms[["Dietlnput"]], matrix(c(max(Times),O),ncol=2))
}
Some code for timing
##TimedoEvents <- TimeNextlnterval <- Timeinit <- 0
insert all the events for this pulse
##ptm <- proc.time()[1]
if ((zz <- nrow(Parms[["Dietlnput"]])) > 0) {
ev$insertEvent(Parms[["Dietl nput"]][, 1],diet_input,-1)

}

##Timeinit <- Timeinit + proc.time()[1]- ptm

ED_001592_00018377-00001

}

##writelines(paste("Time to initialize Dietlnput:", Timeinit,"seconds"))
update 'now'
now <- Times[1]

##setup the matrix to receive the output
ltmp <- list()
inter<- 1
##run through the simulations.
repeat {

}

if (ev$quit(now)) break
##ptm <- proc.time()[1]
ys <- ev$doEvents(now,Parms,y,ydisc,ev)
##TimedoEvents <- TimedoEvents + proc.time()[1]- ptm
y <- ys[[1]]
ydisc <- ys[[2]]
Parms[names(ydisc)] <- ydisc
##ptm <- proc.time()[1]
nextint <- ev$getNextlnterval(now)
##if (getOption("Print.nextint")) print(nextint)
##TimeNextlnterval <- TimeNextlnterval + proc.time()[1]- ptm
ltmp[[inter]] <- ode(y, nextint, "vliver_pbpk_derivs",Parms, method=method,

dllname="vliverPBPK",
initfunc="vliver_pbpk_init",
nout=nextra,outnames=Outnames, ...)

y <- ltmp[[inter]][zz <- nrow(ltmp[[inter]]),2:(nstate+1)]
now <- ltmp[[inter]][zz, 1]
if (inter > maxinter)
{

if (now> max(Times)/10) maxinter <- maxinter*10
else stop(paste("Solutions only obtained through" ,now, "after" ,maxinter, "attempts."))

}
inter<- inter + 1

tmp <- do.call("rbind",ltmp)
tmp <- tmp[!duplicated(tmp[, 1]),]
##write lines(c(paste("Timing for doE vents:", TimedoEvents),
paste("Timing for Nextlntervai:",TimeNextlnterval)))
structure(list(result=tmp[tmp[, 1] %in% Times,],

parameters=Parms,
mode l="vliver _pbpk",
method=method,
control=ldots),

class="RDynOut")

vliver_pbpk_deriv<- function(t,y,newParms, ...){
ldots <- list(...)
#Number of state variables:
nstate <- 9
ndisc <- 0
nextra <- 1
Outnames <- c("Ratioblood2plasma")
##Initialize parameters and state variables
Parms <- in itparms(newParms, vliver _pbpk. Parms, ComputeParms)

ED _00 1592_000 18377-00002

}

return(DLLfunc("vliver_pbpk_derivs",O,y,Parms,
dllname="vliverPBPK",
initfunc="vliver_pbpk_init",
nout=nextra ,outna mes=Outnames, ...))

DLLfunc <-function (tunc, times, y, parms, dllname, initfunc = dllname,

{

rpar = NULL, ipar = NULL, nout = 0, outnames = NULL, forcings = NULL,
initforc = NULL, fcontrol = NULL)

if (!is.numeric(y))
stop("'y' must be numeric")

n <- length(y)
if (!is.null(times) && !is.numeric(times))

stop("'times' must be NULL or numeric")
if (!is.null(outnames))

if (length(outnames) != nout)
stop("length outnames should be = nout")

Modellnit <- NULL
Outinit <- NULL
flist <- list(fmat = 0, tmat = 0, imat = 0, ModeiForc = NULL)
Ynames <- attr(y, "names")
if (is.null(dllname) II !is.character(dllname))

stop("'dllname' must be a name referring to a dll")
if (!is.null(initfunc))

if (is.loaded(initfunc, PACKAGE= dllname, type = "") II
is.loaded(initfunc, PACKAGE= dllname, type ="Fortran")) {
Modellnit <- getNativeSymbollnfo(initfunc, PACKAGE= dllname)$address

}
else if (initfunc != dllname && !is.null(initfunc))

stop(paste("cannot integrate: initfunc not loaded",
initfunc))

if (is.null(initfunc))
initfunc <- NA

if (!is.null(forcings))
flist <- checkforcings(forcings, times, dllname, initforc,

TRUE, fcontrol)
if (!is.character(func))

stop("'func' must be a *name* referring to a function in a dll")
if (is.loaded(func, PACKAGE= dllname)) {

Func <- getNativeSymbollnfo(func, PACKAGE= dllname)$address
}
else stop(paste("cannot run DLLfunc: dyn function not loaded: ",

tunc))
dy <- rep(O, n)
storage.mode(y) <- storage.mode(dy) <-"double"
out<- .Call("caii_DLL", y, dy, as.double(times[1]), Func,

Modellnit, parms, as.integer(nout), as.double(rpar),
as.integer(ipar), as.integer(1), flist, PACKAGE = "deSolve")

vout <- if (nout > 0)
out[(n + 1):(n + nout)]

else NA
out<- list(dy = out[1 :n], var = vout)
if (!is.nuii(Ynames))

names(out$dy) <- Ynames
if (!is.null(outnames))

ED _00 1592_000 18377-00003

}

names(out$var) <- outnames
return(out)

ED_001592_00018377-00004

